Ascorbic Acid-Rich Moringa oleifera Lam. Extract Inhibits Hepatorenal Toxicity and Enhances the Endogenous Antioxidant Levels in Streptozotocin-Induced Type II Diabetes
PDF

Keywords

Hyperglycemic
Hyperlipidemic
Moringa oleifera
Oral glucose tolerance test
Streptozotocin

DOI

10.36922/itps.v2i2.476

Abstract

Background. The cases of diabetes increase day by day due to unhealthy lifestyle, food habit, and less food intake. Novel drugs for the treatment of diabetes are urgently needed. Most researchers are looking for alternative drugs (plant-based drugs) for the treatment of diabetes.

Objective. The current experiment was designed to examine the hepatic and renal beneficial effect of Moringa oleifera Lam. (MO) extract in the streptozotocin (STZ)-induced diabetes.

Methods. Antidiabetic potential of the MO extract was estimated in terms of blood glucose levels, plasma insulin, hexokinase, and glucose-6-phosphate. Antihyperlipidemic effects of MO extract were evaluated through the estimation of low-density lipoprotein (LDL) cholesterol, total cholesterol (TC), triglyceride (TG), very LDL (VLDL) cholesterol, and high-density lipoprotein (HDL) level whereas the antioxidant effects were evaluated through estimation of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione peroxidase (GPx) levels in diabetic rats.

Results. Dose-dependent treatment using MO extract significantly increased the body weight, hexokinase, plasma insulin, HDL, SOD, CAT, and GPx levels (P < 0.001) and significantly decreased the levels of fasting blood glucose, TC, TGs, LDL, VLDL, MDA, fructose-1,6-bisphosphate, glucose-6-phosphate, and glycated hemoglobin in STZ-induced diabetic rats (P < 0.001).

Conclusion. MO can be used as a therapeutic agent in the management of elevated blood glucose levels through the alterations in the blood glucose level, plasma level of insulin, and various biochemical parameters.

References

Mayega, R.W.; Guwatudde, D.; Makumbi, F., Nakwagala, F.N.; Peterson, S.; Tomson, G.; Ostenson, C.G. Diabetes and Pre- Diabetes among Persons Aged 35 to 60 Years in Eastern Uganda: Prevalence and Associated Factors. PLoS One, 2013, 8(8), 1-11.

Graham, M.L.; Janecek, J.L.; Kittredge, J.A.; Hering, B.J.; Schuurman, H.J. The Streptozotocin-Induced Diabetic Nude Mouse Model: Differences between Animals from Different Sources. Comp. Med., 2011, 61(4), 256-360.

Abdulkarim, S.M.; Long, K.; Lai, O.M.; Muhammad, S.K.S.; Ghazali, H.M. Some Physio-chemical Properties of Moringa oleifera Seed Oil Extracted Using Solvent and Aqueous Enzymatic Methods. Food Chem., 2005, 93, 253-63.

Ruckmani, K.; Kavimani, S.; Anandan, R.; Jaykar, B. Effect of Moringa oleifera Lam. on Paracetomol Induced Hepatotoxicity. Indian J. Pharm. Sci., 1998, 60, 33-5.

Udupa, S.L.; Udupa, A.L.; Kulkarni, D.R. A Comparative Study on the Effect of Some Indigenous Drugs on Normal and Steroid-depressed Healing. Fitoterapia, 1998, 69, 507-10.

Guevara, A.P.; Vargas, C.; Uy, M. Anti-inflammatory and Antitumor Activities of Seed Extracts of Malunggay, Moringa oleifera L. (Moringaceae). Philipp. J. Sci., 1996, 125, 175-84.

Chaudhary, R.D.; Chopra, R.D. Herbal Drug Industry: A Practical Approach to Industrial Pharmacognosy. New Delhi: Eastern Publishers; 1996. p. 58.

Bhavasar, G.C.; Guru, R.V.; Chadha, A.K. Antibacterial Activity of Some Indigenous Medicinal Plants. Med. Surg., 1965, 5, 11-4.

Caceres, A.; Cabrera, O.; Morales, O.; Mollinedo, P.; Mendia, P. Pharmacological Properties of Moringa oleifera. 1: Preliminary Screening for Antimicrobial Activity. J. Ethnopharmacol., 1991, 33, 213-6.

Bhishagratna, K.K. An English Translation of Sushrutam Samhita Based on the Original Sanskrit Text, 3. Varanasi, India: Chowkhamba Sanskrit Series Office; 1991. p. 213-9.

Babu, R.; Chaudhuri, M. Homewater Treatment by Direct Filtration with Natural Coagulant. J. Water Health, 2005, 3, 27-30.

Jaiswal, D.; Rai, P.K.; Kumar, A.; Mehta, S.; Watal, G. Effect of Moringa oleifera Lam. Leaves Aqueous Extract Therapy on Hyperglycemic Rats. J. Ethnopharmacol., 2009, 123, 392-6.

Kumar, G.; Sharmila, B.G.; Murugesan, A.G.; Rajasekara, P.M. Hypoglycaemic Effect of Helicteres isora Bark Extract in Rats. J. Ethnopharmacol., 2006, 107, 304-7.

Zhang, X.; Wu, C.; Wu, H.; Sheng, L.; Su, L.; Zhang, L.; Luan, H.; Sun, G.; Sun, X.; Tian, Y.; Ji, Y.; Guo, P.; Xu, X. Anti-hyperlipidemic Effects and Potential Mechanisms of Action of the Caffeoylquinic Acid-rich Pandanus tectorius Fruit Extract in Hamsters Fed a High Fat-diet. PLoS One, 2013, 8(4), e61922.

Nain, P.; Saini, P.; Sharma, S.; Nain, J. Antidiabetic and Antioxidant Potential of Emblica officinalis Gaertn. Leaves Extract in Streptozotocin-induced Type-2 Diabetes Mellitus (T2DM) Rats. J. Ethnopharmacol., 2012, 142, 65-71.

Harborne, J.B. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. London: Chapman and Hall; 1976. p. 99-100,109-10, 144-7, 185-8.

Kumar, V.; Yadav, P.K.S.; Singh, U.P.; Bhat, H.R.; Rana, A.; Zaman, K. Pharmacognostical Evaluation of Cuscuta reflexa Roxb. Pharmcogn. J., 2011, 2(6), 74-82.

Kumar, V.; Yadav, P.K.S.; Singh, U.P.; Bhat, H.R.; Zaman, K. Pharmacognostical and Phytochemical Studies on the Leaves of Paederia foetida Linn. Int. J. Pharm. Tech. Res., 2009, 3, 918-20.

Ahmed, D.; Sharma, M.; Mukerjee, A.; Ramteke, P.W.; Kumar, V. Improved Glycemic Control, Pancreas Protective and Hepatoprotective Effect by Traditional Poly-herbal Formulation "Qurs Tabasheer" in Streptozotocin Induced Diabetic Rats. BMC Complement. Altern. Med., 2013, 13, 10.

World Health Organization. Chronicle. Vol. 39. Geneva: World Health Organization; 1985. p. 51-6.

Turner, M.A. Screening Methods in Pharmacology. New York: Academic Press; 1965. p. 26.

Bonner-Weir, S. Morphological Evidence of Pancreatic Polarity of Beta Cells within Islets of Langerhans. Diabetes, 1988, 37, 616-21.

Al-Awadi, F.M.; Khattar, M.A.; Gumaa, A. On the Mechanism of the Hypoglycaemic Effect of a Plant Extract. Diabetologia, 1985, 28, 432-4.

Parimelazhgan, T.; Arunachalam, K. Antidiabetic Activity of Ficus amplissima Smith. Bark Extract in Streptozotocin Induced Diabetic Rats. J. Ethnopharmacol., 2013, 147, 302-10.

Ahmadi, S.A.; Boroumand, M.A.; Gohari-Moghaddam, K.; Tajik, P.; Dibaj, S.M. The Impact of Low Serum Triglyceride on LDL-Cholesterol Estimation. Arch. Iran. Med., 2008, 11(3), 318-21.

Kakkar, P.; Dos, B.; Viswanathan, P.N. A Modified Spectrophotometric Assay of Superoxide Dismutase. Indian J. Biochem. Biophys., 1984, 21, 130-2.

Sinha, K.A. Colorimetric assay of catalase. Anal. Biochem., 1972, 47, 389-94.

Sunderman, F.W.; Marzouk, A.; Hopfer, S.M.; Zaharia, O.; Reid, M.C. Increased Lipid Peroxidation in Tissues of Nickel Chloride-Treated Rats. Ann. Clin. Lab. Sci., 1985, 15, 229-36.

Kumar, V.; Sharma, K.; Ahmed, B.; Al-Abbasi, F.A.; Anwar, F.; Verma, A. Deconvoluting the Dual Hypoglycemic Effect of Wedelolactone Isolated from Wedelia calendulacea: Investigation Via Experimental Validation and Molecular Docking. RSC Adv., 2018, 8, 18180-96.

Yang, X. Design and Optimization of Crocetin Loaded PLGA Nanoparticles against Diabetic Nephropathy via Suppression of Inflammatory Biomarkers: A Formulation Approach to Preclinical Study. Drug Deliv., 2019, 26(1), 849-59.

Bhattaram, V.A.; Graefe, U.; Kohlert, C.; Veit, M.; Derendorf, H. Pharmacokinetics and Bioavailability of Herbal Medicinal Products. Phytomedicine, 2002, 9(3), 1-33.

Kumar, V.; Anwar, F.; Ahmed, D.; Verma, A.; Ahmed, A.; Damanhouri, Z.A.; Mishra, V.; Ramteke, P.W.; Bhatt, P.C.; Mujeeb, M. Paederia foetida Linn. Leaf Extract: An Antihyperlipidemic, Antihyperglycaemic and Antioxidant Activity. BMC Complement. Altern. Med., 2014, 14, 76.

Strandell, E.; Eizirik, D.L.; Korsgren, O.; Sandler, S. Functional Characteristics of Cultured Mouse Pancreatic Islets Following Exposure to Different Streptozotocin Concentrations. Mol. Cell Endocrinol., 1988, 59, 83-91.

Goldberg, R.B. Lipid Disorders in Diabetes. Diabetes Care., 1981, 4, 561-72.

Memisogullari R, Bakan E. Levels of Ceruloplasmin, Transferin, and Lipid Peroxidation in the Serum of Patients with Type 2 Diabetes Mellitus. J. Diabetes Complications, 2004, 18, 193-7.

Badole, S.L.; Bodhankar, S.L. Antidiabetic Activity of Cycloart- 23-ene-3_, 25-diol (B2) Isolated from Pongamia pinnata (L. Pierre) in Streptozotocin-Nicotinamide Induced Diabetic Mice. Eur. J. Pharmacol., 2010, 632, 103-9.

Asayama, K.; Nakane, T.; Uchida, N.; Hayashihe, H.; Dobashi, K.; Nakazawa, S. Serum Antioxidant Status in Streptozotocin-Induced Diabetic Rat. Horm. Metab. Res., 1994, 26, 313-5.

Latha, M.; Pari, L. Antihyperglycaemic Effect of Cassia auriculata in Experimental Diabetes and its Effects on Key Metabolic Enzymes Involved in Carbohyrdrate Metabolism. Clin. Exp. Pharmacol. Physiol., 2003, 30, 38-43.

Baquer, N.Z.; Gupta, D.; Raju, J. Regulation of Metabolic Pathways in Liver and Kidney During Experimental Diabetes, Effects of Antidiabetic Compounds. Indian J. Clin. Biochem., 1998, 13, 63-80.

Raju, J.; Gupta, D.; Araga, R.R.; Pramod, K.Y.; Baquer, N.Z. Trigonella foenum-graecum (Fenugreek) Seed Powder Improves Glucose Homeostasis in Alloxan Diabetic Rat Tissues by Reversing the Altered Glycolytic, Gluconeogenic and Lipogenic Enzymes. Mol. Cell. Biochem., 2001, 224, 45-51.

Kumar, V.; Ahmed, D.; Anwar, F.; Ali, M.; Mujeeb, M. Enhanced Glycemic Control, Pancreas Protective, Antioxidant and Hepatoprotective Effects by Umbelliferon-Alpha-D-Glucopyranosyl- (2I- > 1II)-Alpha-D-Glucopyranoside in Streptozotocin Induced Diabetic Rats. Springerplus, 2013, 2, 639.

Kumar, V.; Ahmed, D.; Gupta, P.S.; Anwar, F.; Mujeeb, M. Anti-diabetic, Antioxidant and Anti-hyperlipidemic Activities of Melastoma malabathricum Linn. Leaves in Streptozotocin Induced Diabetic Rats. BMC Complement. Altern. Med., 2013, 13, 222.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.